

Biofuel Innovation and Technology Progress

Bio4Fuels Days, Oslo, Norway

II October 2018

Jaap Kiel EERA Bioenergy SPC Thermochemical Platform

# **EERA Bioenergy**

- European Energy Research Alliance (EERA) is the public research pillar of the Strategic Energy Technology Plan (SET-Plan)
- EERA Bioenergy 37 EU research organisations
- Main objectives
  - Align (public) research activities and research infrastructure
  - Have an advisory role to the SET-Plan and to the industrial sector about biomass and bioenergy research priorities for the middle to long term
  - Boost collaborative research
  - Promote infrastructures sharing and scientist mobility





# Outline



#### Focus on Advanced biofuels

- Changing role of biomass
- EU policy on bioenergy/biofuels (R&D)
- Thermochemical & chemical conversion biofuels value chains
- Biochemical & chemical conversion biofuels value chains
- Main R&D challenges (focus on gasification-based biofuels production)
- Time is of the essence!

Presentation partly based on: Lars Waldheim & Francisco Girio, Bioenergy and biofuels conversion technology developments, ETIP Bioenergy 2018

#### Changing role biomass towards 2050

EERA European Energy Research Alliance BIOENERGY ()

Use biomass predominantly in sectors, that cannot be covered (entirely) by other sustainable sources

#### • High value feedstock for the biobased economy

- Production of chemicals and materials
- Connect agro and chemistry sectors
- Sustainable fuel
  - Aviation
  - Shipping
  - Heavy duty road transport
  - High-temperature heat
  - Residential heating (e.g. gas in old cities)
  - Back-up power supply and to cover intermittency problems
  - In combination with CCS enable negative GHG emissions (CO<sub>2</sub> sink)



Source: Nils-Olof Nylund, IMECHE Future Fuels, 2016



# EU policy on bioenergy/biofuels (R&D)

- Renewable Energy Directive II (RED II)
  - Target for renewable transport fuels (14% in 2030, of which 3.5% advanced biofuels = 300-400 plants)
- SET plan and Action 8 Implementation Plan
  - 2030 targets on cost reduction, efficiency increase and GHG savings, for advanced biofuels production:
    - Net process efficiency improvement for biomass conversion to end biofuels products of at least 30%
    - At least 60% GHG savings from the use of advanced biofuels (including biomass feedstock contribution)
    - Cost reduction for advanced biofuels to <50 €/MWh in 2020 and <35 €/MWh in 2030, excluding taxes and feedstock cost</li>

32 % overall RES<br/>target by 203014 % RES in transport<br/>by 20301.3 pp annual<br/>increase for RES in<br/>heating and cooling7% cap of first<br/>generation biofuels3.5 % advanced<br/>biofuels by 2030



SET Plan Implementation Plan Action 8: Bioenergy and Renewable Fuels for Sustainable Transport



#### Thermochemical & chemical conversion value chains





### Thermal biomass gasification – state of the art

- Biomass gasification commercially available (100 kWth up to 100 300 MWth scale)
- Market implementation limited mainly to relatively simple power and heat applications
- Biomass-gasification-based production of transportation fuels or chemicals has not yet had commercial breakthrough
- This is due to both technical challenges and non-technical issues:
  - Syngas cleaning/upgrading/synthesis processes are complex and require rather large scale in order to achieve positive economics
  - Technical uncertainties and availability risks
  - Difficulties in financing the first-of-a-kind industrial plants
  - Binding targets for renewable fuels missing
- Many possibilities for improvement in terms of overall biomass conversion efficiency, complexity, availability, reliability, CAPEX and OPEX



### Thermal gasification to biofuels

| Developer/project |       | Feed              | Year | Cap.     | Туре     | Status  |
|-------------------|-------|-------------------|------|----------|----------|---------|
|                   |       |                   |      | MWth     |          |         |
| Ambigo            | NL    | LC biomass        |      | 4 SNG    | Demo     | Plan.   |
| Bioliq (KIT)      | DE    | PO+char           | 2013 | 5 feed   | Demo     | Op.     |
| BioTFueL          | DE/FR | Torr. agri resid. | 2017 | 15 feed  | Demo     | Com.    |
| Enerkem           | CA    | RDF               | 2014 | 30 EtOH  | lst ind. | Com.    |
|                   | NL    | Plastic waste     |      | 220 MeOH | Comm.    | Plan.   |
| EON Bio2G         | SE    | LC biomass        |      | 200 SNG  | lst ind. | Plan.?  |
| Fulcrum           | USA   | RDF               |      | 50 BTL   | lst ind. | Plan.   |
| Gobigas           | SE    | LC biomass        | 2013 | 20 SNG   | lst ind. | Idle    |
| GoGreenGas        | UK    | RDF               | 2018 | 4 SNG    | Demo     | Constr. |
| GTI               | USA+  | LC biomass        | 2009 | 2 BTL    | Demo     | Op.     |
| Kaidi Ajos        | FI/CN | LC biomass        |      | 300 BTL  | lst ind. | Plan.   |
| LTU Green Fuels   | SE    | Black liquor, PO  | 2009 | I DME    | Demo     | ldle    |
| Red Rock          | USA   | LC biomass        |      | 75 BTL   | lst ind. | Plan.   |
| Sekisui/Lanzatech | JP/NZ | MSW               | 2013 | EtOH     | Pilot    | †2017   |



#### Operating gasification to biofuel plants



30 MWth biomass input 20 MW bio-methane, 5 MW heat output TUW/Repotec/Valmet, Haldor Topsoe SNG Operation 2014, 2017-2018 highlights:

- MCR capacity reached
- 1800 uninterrupted hours Mothballing decision taken



100 000 tons of RDF input
38 000 m<sup>3</sup> of methanol/ethanol
Univ. Sherbrooke/Enerkem technology
Operation 2014, 2017-2018 highlights:

- MeOH to EtOH conv. installed
- Plans for project in Rotterdam
- ~220 M\$US from investors

# nts. EU

#### Short-term operating & planned gasification to SNG plants, EU



Start-up 2018 RDF feedstock 4 MW bio-methane output Outotec gasifier, APP plasma AMEC FW VESTA SNG 27 M£ cost, 11+5 M£ support Cadent (8.7 M£), APP, Carbotech, Progressive Energy, AMEC FW



Biomass feedstock (demolition wood)
4 MW bio-methane output
ECN Milena gasifier, OLGA, ESME SNG
25 M€, cost, 6.5 M€ support
Engie, Gasunie, ECN p/o TNO, Dahlman
Renewable Technologies, Synova, PDENH



#### Short-term planned gasification to biofuel plants, USA



150 000 tonnes/year biomass input 57 000 m<sup>3</sup>/year of BTL products TC Global gasifier Velocys microchannel FT

~ 200 M\$, 74 M\$ DPA funding (DoD)



160 000 tones/year MSW (before MTP) input
40 000 m<sup>3</sup>/year of BTL products
Thermochem Recovery Int. gasifier
Emerging Fuels Technology FT
~ 280 M\$, 70 M\$ DPA funding (DoD), Air BP and UA invested 30 M\$ each



# Pyrolysis, catalytic pyrolysis and hydropyrolysis to biooils

| Company          | Site                | Feed        | Year     | Cap.         | Туре                 | Status |  |  |  |  |
|------------------|---------------------|-------------|----------|--------------|----------------------|--------|--|--|--|--|
|                  |                     |             |          | ML/yr        |                      |        |  |  |  |  |
| Empyro (BTG)     | NL                  | Wood resid. | 2015     | 20           | I <sup>st</sup> ind. | Ор.    |  |  |  |  |
| Ensyn            | CA                  | Wood resid. | 2006, 15 | 20           | Com.                 | Ор.    |  |  |  |  |
| Fortum           | FI                  | Wood resid. | 2014     | 50           | I <sup>st</sup> ind. | Op.    |  |  |  |  |
| Bioliq (KIT)     | DE                  | Agri resid. | 2010     | 2            | Demo                 |        |  |  |  |  |
| Metsä            | SE                  | Wood resid. | 2022     | 22           | Com.                 | Plan   |  |  |  |  |
|                  | Catalytic pyrolysis |             |          |              |                      |        |  |  |  |  |
| Anellotech       | USA                 | Wood resid. | 2018     | n.a.         | Pilot                | Op.    |  |  |  |  |
| Fraunhofer Inst. | DE, UK              | Various     | 2015     | 7 tpd feed   | Pilot                | Op.    |  |  |  |  |
| Hydropyrolysis   |                     |             |          |              |                      |        |  |  |  |  |
| IH2              | USA, IN             | Wood resid. | 2017     | 5 tpd feed   | Demo                 | Com.   |  |  |  |  |
| G4 Insights      | USA                 | Wood resid. | 2017     | 0.1 tpd feed | Pilot                | Ор.    |  |  |  |  |



#### Fast pyrolysis (~I-2 s, 450–550°C) operational plants, EU



120 tonnes/d woody biomass input
20 000 m<sup>3</sup>/y FPO +steam+0.5 MWe
Univ.Twente/BTG rotating cone process
19 M€, support from FP7



Source: Lars Waldheim & Francisco Girio, ETIP Bioenergy 2018

100 000 tonnes/y woody biomass input
50 000 m<sup>3</sup>/y of FPO products
VTT/Valmet CFB process. 200 MWth
~ 32 M€ (excl. boiler plant), 8 M€ support



## Catalytic pyrolysis and hydropyrolysis installations

Thermo-Catalytic Reforming Fraunhofer (TCR®) technology





Slow pyrolysis, 4-10 min, at ~ 450°C, catalytic (char) reforming at ~ 750°C 80 kg/h pilot operating, 300 kg/h commis. H2020 projects 2 SynFuels and FlexJet to establish 500 kg/hr units

Catalytic hydropyrolysis in hydrogen at 400– 550°C, 2-3 MPa pressure. Demo in India 5 tonnes/d feed 2017 Developed by GTI and licensed to CRI Studies for 1<sup>st</sup> ind. plants in NO and IN



### Hydrothermal processing to intermediates and gas

| Company              | Site  | Feed               | Year | Cap.  | Туре                 | Status |
|----------------------|-------|--------------------|------|-------|----------------------|--------|
|                      |       |                    |      | ML/yr |                      |        |
| Licella <b>(HTL)</b> | AU    | Various            | 2012 | ?     | Demo                 | Com.   |
| Licella/Canfor       | CA    | Wood & pulp resid. |      | ?     | I <sup>st</sup> ind. | Plan.  |
| Silva Green Fuels    | NO    | Wood resid.        | 2019 | I.4   | Demo                 | Plan.  |
| Steeper AAU (HTL)    | DK/CA |                    |      |       |                      |        |
| SCW systems          | NL    | Wet biomass        | 2017 | 2 MW  | Demo                 | Op.    |
| (HTG)                |       |                    |      | 20 MW | I <sup>st</sup> ind. | Plan.  |





#### Intermediates to hydrocarbons





#### Biochemical & chemical conversion value chains





#### Lignocellulosic ethanol facilities

| Company             | Site | Feed          | Yea  | ML/yr | Туре                 | Status  |
|---------------------|------|---------------|------|-------|----------------------|---------|
|                     |      |               | r    |       |                      |         |
| Abengoa             | ES   | Agri res. MSW | 2008 | 5     | Demo                 | Idle    |
| Beta Renew.         | IT   | Agri resid.   | 2013 | 76    | lst ind.             | Idle?   |
| Energochemic        | SL   | Agri resid.   | 2017 | 70    | Comm                 | Constr. |
| CIMV                | FR   | Agri resid.   | 2017 | 0.9   | Demo                 | Com.    |
| Clariant            | DE   | Agri resid.   | 2012 | 1.2   | Demo                 | Ор.     |
| DuPont              | USA  | Agri resid.   | 2016 | 114   | I <sup>st</sup> ind. | Idle    |
| Granbio             | BR   | Bagasse       | 2014 | 82    | lst ind.             | Com.    |
| Futurol             | FR   | Agri resid.   | 2011 | 0.18  | Demo                 | Ор.     |
| (pre-treatment)     |      |               | 2016 |       | Demo                 | Op.     |
| Inbicon (Ørsted)    | DK   | Straw         | 2010 | 6     | Demo                 | Idle    |
| POET/DSM            | USA  | Agri resid.   | 2014 | 76    | I <sup>st</sup> ind. | Com.    |
| Raizen              | BR   | Bagasse       | 2015 | 40    | I <sup>st</sup> ind. | Com.    |
| Borregaard BALI     | NO   | Woody biom.   | 2013 | 0.14  | Demo                 | Ор.     |
| RISE (ex. SEKAB)    | SE   | Woody biom.   | 2004 | 0.15  | Pilot                | Ор.     |
| STI                 | FI   | Woody biom.   | 2017 | 10    | Demo                 | Com.    |
| Synata (ex.Abengoa) | USA  | Agri resid.   | 2016 | 95    | I <sup>st</sup> Ind. | Op. ?   |



#### Lignocellulosic ethanol Beta Renewables, Crescentino, Italy



Source: Lars Waldheim & Francisco Girio, ETIP Bioenergy 2018

First cellulosic ethanol industrial scale plant in the world – start up 2013 76 000 m3/year of ethanol , 13MWe generated from lignin. 150 M€, FP7 support

Beta Renewables bought by Versalis in Sept. 2018

### Developments lignocellulosic ethanol



Sunliquid cellulosic ethanol Announced plans for plants in SL, RO Sept. 2018 – groundbreaking RO plant (50 ton/a ethanol) CLARIANT







#### Intermediates to hydrocarbons





## Sugars and syngas to higher alcohols and hydrocarbons

| Company                   | Site   | Products       | Year | Cap.    | Туре                 | Status  |  |
|---------------------------|--------|----------------|------|---------|----------------------|---------|--|
|                           |        |                |      | ML/yr   |                      |         |  |
| Amyris                    | 2*NZ   | Various non-   |      | 50      | Comm.                | Plan    |  |
|                           | KO, AU | fuel           |      | 70      | Comm.                | Plan.   |  |
| DSM (ex-Amyris)           | BR     | Farnesene      | 2012 | 40      | I <sup>st</sup> ind. | Op.     |  |
| BUTAMAX                   | UK     | Iso-butanol    | 2012 | 0.2     | Demo                 | Com.    |  |
|                           | USA    |                |      |         | I <sup>st</sup> ind. | Plan.   |  |
| GEVO                      | USA    | Iso-butanol    | 2014 | 6       | I <sup>st</sup> ind. | Com.    |  |
| Global Bioenergies        | FR     | Iso-butene     | 2017 | 100 tpa | Demo                 | Op.     |  |
| REGI (LS9)                | USA    | Fatty alchols  | 2012 | 0.13    | Demo                 | Op.     |  |
| VIRENT                    | USA    | Various fuel/  | 2009 | ~ 0.04  | Demo                 | Ор.     |  |
|                           |        | non-fuel       | 2013 | ~ 0.02  | Demo                 | Op.     |  |
| Syngas (CO+H2) to alcohol |        |                |      |         |                      |         |  |
| Lanzatech                 | USA    | Ethanol        | 2018 | 60      | Demo                 | Constr. |  |
|                           |        | Fatty alcohols |      |         | Dev.                 |         |  |



#### Alcohols to hydrocarbons

| Company                     | Site    | Feed          | Year  | Cap.  | Туре  | Status       |  |  |  |
|-----------------------------|---------|---------------|-------|-------|-------|--------------|--|--|--|
|                             |         |               |       | ML/yr |       |              |  |  |  |
| Main product diesel and jet |         |               |       |       |       |              |  |  |  |
| Gevo                        | USA     | lso-butanol   | 2011  | 0.5   | Demo  | Op.          |  |  |  |
| Вуоду                       | USA     | Ethanol       | 2017  |       | Demo  | Ор.          |  |  |  |
| Sw. Biofuels                | SE      | Alcohols      | 2012  | 0.01  | Pilot | Ор.          |  |  |  |
| Lanzatech                   | NZ(USA) | Ethanol       | 2015  |       | Pilot | Ор.          |  |  |  |
|                             | Mai     | n product gas | oline |       |       |              |  |  |  |
| Enerkem                     | CA      | Methanol      | 2018  |       | Pilot | Ор.          |  |  |  |
| Mobil MTG                   | USA     | Methanol      | 1985  | 850   | Com.  | <b>†1995</b> |  |  |  |
| KIT                         | DE      | Methanol      | 2014  | 0.7   | Pilot | Ор.          |  |  |  |
| Lurgi MTS                   | DE      | Methanol      | 2008  |       | Pilot | 2011         |  |  |  |
| Topsoe TIGAS                | DK      | Methanol      | 2014  | 90    | Com.  | 2018         |  |  |  |
| Vertimass                   | USA     | Ethanol       |       |       |       |              |  |  |  |



#### Microalgae to biofuels

|   | Company    |    | Year | Туре       | Cap.<br>kton dw/y | Product   | Future            |
|---|------------|----|------|------------|-------------------|-----------|-------------------|
|   | InteSusAl  | PT | 2015 | Microalgae | 0.04              | Biodiesel | Non-fuel          |
| 2 | All-Gas    | ES | 2014 | Microalgae | 0.014             | Biogas    | Fuels             |
| 3 | Algafuel   | PT | 2014 | GE µ-algae | 0.001             | Ethanol   | HTL-oil, non-fuel |
| 4 | Algae Tech | AU | 2018 | Microalgae | Pilot (IN)        | Biofuel   |                   |

Many have shifted from biofuel to non-fuel products in 2014-2017. Increasingly promising prospects for macroalgae (seaweed)!





#### Main directions in biofuels R&D – focus on gasificationbased biofuels (taken from the new EERA Bioenergy SRIA)

- Process simplification and intensification
  - Significant cost dimension (CAPEX, OPEX and plant availability, reliability and higher net plant efficiency)
  - Consider smaller scale? (easier financing, more integration options, use of local biomass)
- Increasing feedstock flexibility and allowing application of (cheaper) biomass low-quality feedstock
  - Mainly aiming at cost reduction
- Co-production of chemicals/materials
  - Energy-driven biorefinery; to boost the business case for energy products (with higher added value for chemicals/materials)
- Combining thermochemical and biochemical processing
  - E.g., thermochemical conversion of residues of biochemical processing (e.g., lignin gasification), biochemical product gas cleaning, syngas fermentation
- Maximizing resource efficiency
  - E.g. by combining biomass processing with other sources like renewable hydrogen produced from solar and wind
- Creating negative GHG emissions
  - Involving concepts like BioEnergy + Carbon Capture & Storage (BECCS) and biochar co-production
- Coupling with other industrial activities (sector coupling)
  - Industrial symbiosis, e.g. exchange of utilities and residues/feedstock, heat integration



#### Co-production of chemicals/materials – Energy-driven biorefinery Via gasification to biofuels, biochemicals, heat and power

ECN > TNO innovation for life



#### Repotec winddiesel process





#### www.winddiesel.at

Source: Christian Aichernig, ETIP Bioenergy workshop Emerging Technologies, Brussels, 4 June 2018



#### Repotec winddiesel process





Source: Christian Aichernig, ETIP Bioenergy workshop Emerging Technologies, Brussels, 4 June 2018



We need to step up biofuels implementation and R&D

- Industrial implementation of R&D requires patience
- The economics of bridging the "development gap" to operational 1st industrial plant is a main bottleneck for biofuels, in particular challenging for one-product start-ups
- Support e.g. Investment Fund should be designed with this in mind to be effective in reaching the desired impact
- Also policy must be sustainable over time, not only biofuels
- Firm incentives needed to ensure R, D&D up to high TRL and timely wide-scale commercial role out (taking into account required time intervals)



GLOBAL WARMING OF 1.5 °C **IDCC** INTERGOVERNMENTAL PANEL ON Climate change



"Modern bioenergy is the overlooked giant of the renewable energy field," said Dr Fatih Birol, the IEA's Executive Director





### THANK YOU FOR YOUR ATTENTION

Jaap.kiel@tno.nl

SPC Thermochemical Platform